Path Algebras and BGP

Despoina (Debbie) Perouli

PhD Student Computer Science Department Purdue University

BGP Workshop, IIJ Tokyo 2010/04/14

Think of a routing protocol as...

- a distributed algorithm to solve an optimization problem
- Globally optimal paths
 - lots of theory (Dijkstra, Bellman-Ford, Semirings)
- Locally optimal paths
 - new territory
 - BGP belongs to this space
 - sufficient conditions known to guarantee a stable and unique solution

A Familiar Semiring (R₊, +, ×)

2 + 3 = 3 + 2 (2 + 3) + 4 = 2 + (3 + 4) *Associativity* 2 + 0 = 2 *Identity*

 $(2\cdot3)\cdot4 = 2\cdot(3\cdot4)$ Associativity $2\cdot1 = 1\cdot2 = 2$ Identity $2\cdot0 = 0\cdot2 = 0$ Annihilator

 $2 \cdot (3 + 4) = 2 \cdot 3 + 2 \cdot 4$ Left Distributivity $(2 + 3) \cdot 4 = 2 \cdot 4 + 3 \cdot 4$ Right Distributivity

(S, ⊕, ⊗)

 $a \oplus b = b \oplus a$ Commutativity $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ Associativity $a \oplus 0 = a$ Identity

(ab)c = a(bc)a1 = 1a = a a0 = 0a = 0 *Associativity Identity Annihilator*

 $a(b \oplus c) = ab \oplus ac$ $(b \oplus c)a = ba \oplus ca$ Left Distributivity Right Distributivity

Semirings and Routing

S	Ð	\bigotimes	Description
N U{+∞}	min	+	Shortest paths
N ∪{+∞}	max	min	Widest paths
[0, 1]	max	×	Most Reliable paths

Matrices can also form semirings!

Too good to be true ?!

Proving stability and uniqueness of paths, when:

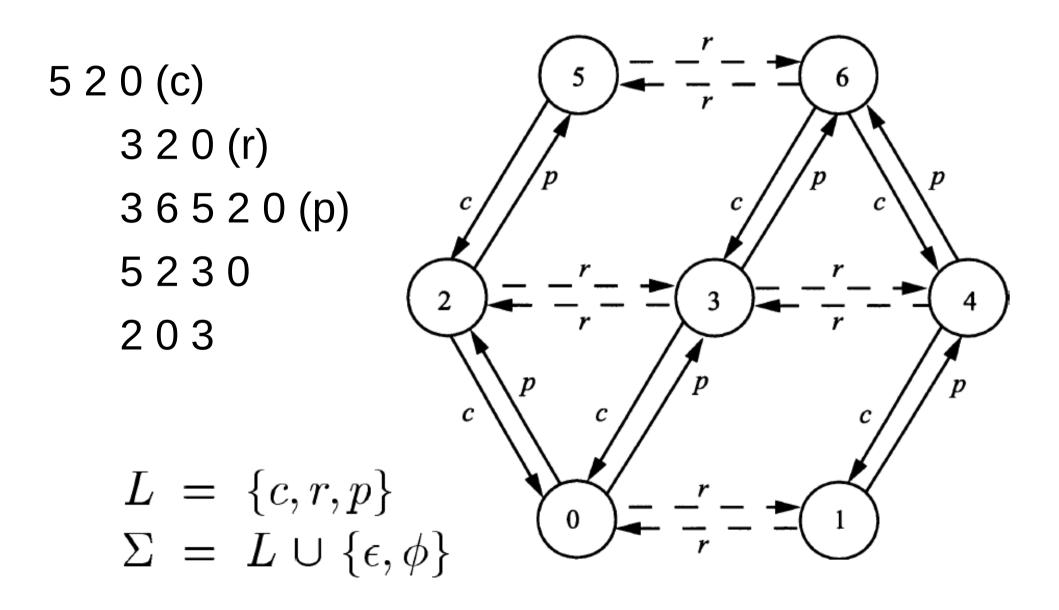
- Requirements are more complicated
 - shortest widest path
 - BGP policies!
- Operator properties do not (need to) hold e.g lack of associativity or distributivity

Routing Algebra

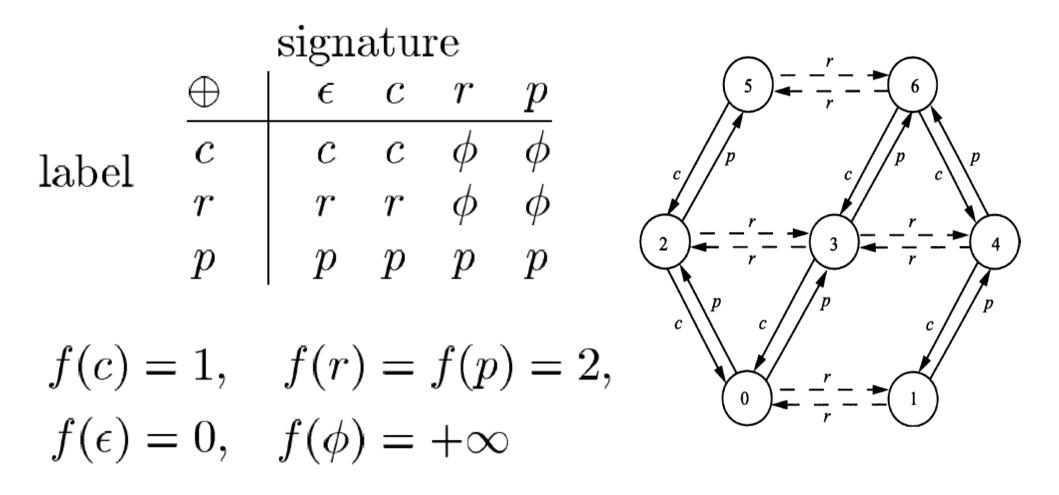
- 3 sets:
 - Weights
 - Labels
 - Signatures, including *rejection*
- 1 operator: (label, signature) to signature
- 1 function: signature to weight
- a total order on weights

$$(W, \preceq, L, \Sigma, \phi, \oplus, f)$$

Example: business relationships



Formally

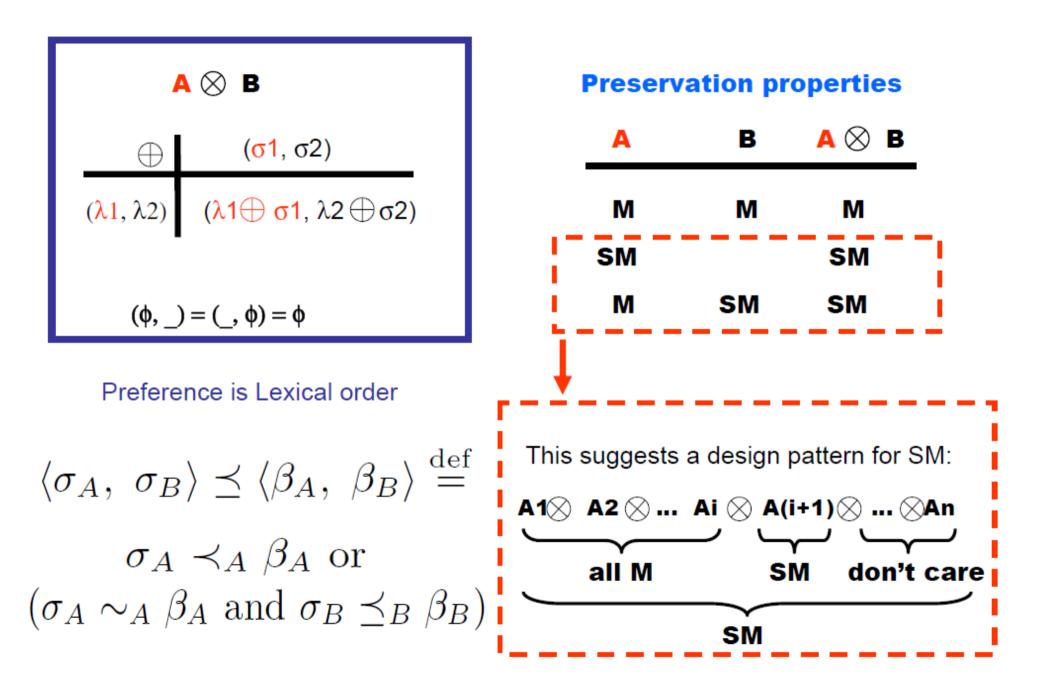


the Gao-Rexford guideline/assumption: f(c) = 1 < 2 = f(r) = f(p)

Convergence Properties

- Monotonicity (Strict) $l \in L$ and $\alpha \in \Sigma$, $f(\alpha) \preceq f(l \oplus \alpha)$
- Isotonicity $l \in L \text{ and } \alpha, \beta \in \Sigma,$ $f(\alpha) \preceq f(\beta) \Rightarrow f(l \oplus \alpha) \preceq f(l \oplus \beta)$
- M: path vector protocols converge
 - Signaling information: (P, a)
- I: the paths onto they converge are optimal

Lexical Product



BGP could look like

 $\mathrm{EBGP}^A \stackrel{\mathrm{def}}{=}$

PROG(\otimes (locpref: FLIP(LP(2^{32})), aspath : SIMSEQ(2^{16}, 200), origin : OP(3), med : \perp (min, LP(2^{32})), community : \perp (min, TAGS(*int*))))

Since BGP paths are locally optimal

Distributivity is too strong a property $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

Strictly Inflationary (remember SM) is sufficient for a stable, unique, locally optimal solution.

Important Properties

property	definition
D	$\forall a, b \in S, f \in F : f(a \oplus b) = f(a) \oplus f(b)$
INFL	$\forall a \in S, f \in F : a \leq f(a)$
S.INFL	$\forall a \in S, F \in F : a \neq \overline{0} \implies a < f(a)$
К	$\forall a, b \in S, f \in F : f(a) = f(b) \implies a = b$
$K_{\overline{0}}$	$\forall a, b \in S, f \in F : f(a) = f(b) \implies (a = b \lor f(a) = \overline{0})$
С	$\forall a, b \in S, f \in F : f(a) = f(b)$
$C_{\overline{0}}$	$\forall a, b \in S, f \in F : f(a) \neq f(b) \implies (f(a) = \overline{0} \lor f(b) = \overline{0})$

4! Inflationary Policy Functions for 3 strata

	0	1	2	D	K_∞	$C_\infty \mid$		0	1	2	D	K_∞	C_∞
а	0	1	2	*	*		m	2	1	2			
b	0	1	∞	*	*		n	2	1	∞		*	
С	0	2	2	*			ο	2	2	2	*		*
d	0	2	∞	*	*		р	2	2	∞	*		*
е	0	∞	2		*		q	2	∞	2			*
f	0	∞	∞	*	*	*	r	2	∞	∞	*	*	*
g	1	1	2	*			S	∞	1	2		*	
h	1	1	∞	*		*	t	∞	1	∞		*	*
i	1	2	2	*			u	∞	2	2			*
j	1	2	∞	*	*		V	∞	2	∞		*	*
k	1	∞	2		*		w	∞	∞	2		*	*
Ι	1	∞	∞	*	*	*	x	$ \infty $	∞	∞	*	*	*

References

- T. G. Griffin, The Stratified Shortest-Paths Problem, COMSNETS 2010
- J. L. Sobrinho, An Algebraic Theory of Dynamic Network Routing, IEEE/ACM Transactions on Networking, October 2005.
- T. G. Griffin and J. L. Sobrinho, Metarouting, SIGCOMM 2005.
- J. S. Baras and G. Theodorakopoulos, Path Problems in Networks, Morgan & Claypool Publishers, Jan. 2010
- M. Gondran and M. Minoux, Graphs, Dioids and Semirings: New Models and Algorithms, Springer 2008

どうもありがとう。

depe@purdue.edu