

Characterizing AS Relationships by Recursive Analysis of Measured AS Adjacency Matrix

Hirochika Asai <panda@hongo.wide.ad.jp>
Esaki Lab., the University of Tokyo
@IIJ, April 14th, 2010

Summary

- Quantify AS magnitude
 - quantify AS' network scale by using traffic transition model based on degree
 - To calculate the magnitude, we use eigenvalue analysis.
- Characterize AS relationships
 - analyze difference of magnitude by AS relationships
 - towards path-less annotation
 - show potential of finding inaccurate annotations in CAIDA's algorithm

AS relationships

- two major types
 - □ transit
 - provider-customer relationship
 - provider AS : larger network
 - -customer AS: smaller network
 - peering
 - peer-to-peer relationship
 - among equal-scale networks

Related work

- AS relationships inference based on "<u>valley-free</u> <u>path model</u>"
 - heuristics [Gao 2001]
 - annotate links, eliminating contradiction to valley-free path model by analyzing <u>AS paths in routing tables</u>
 - weighted) MAX2SAT [Battista et al. 2003, 2007,
 Dimitropoulos et al. 2005, 2007]
 - maximize the (weighted) number of valley-free <u>paths in</u> routing tables

These researches classify the relationships into two or three (+sibling) types.

→ Characterize the relationships quantitatively

Well-known way to represent the relationships quantitatively

- Degree; i.e., #number of neighbors
 - high degree = larger AS
 - Larger AS tends to be provider.
 - low degree = smaller AS
 - Smaller AS tends to be customer.

In reality...

Note; the distribution is normalized by area for each type of relationships.

AS Magnitude Quantification

- AS magnitude
 - representing network scale
 - e.g., degree (but more appropriate)
- concept of AS magnitude quantification
 - take into account the scale of neighbor
 ASes
 - e.g., An AS connecting to larger ASes is also larger, even though the AS has low degree.

How do we calculate the magnitude?

- employ traffic transition model based on "degree"
 - What does degree mean? (an aspect)
 - The degree vector multiplied by a constant is calculated as the left eigenvector of AS adjacency (stochastic) matrix corresponding to the maximum eigenvalue.
 - i.e., degree = traffic distribution in random walk model
 - extend this into non-random walk model

- non-random walk model
 - egress traffic (probability of transitioning to a neighbor)
 - proportional to the neighbor AS's magnitude
 - in random walk, the probability is uniform at every neighbors

Note; the magnitude is defined recursively

AS magnitude quantification - calculation procedure

Idea: calculate the traffic distribution and map it to the magnitude

(1) Define a weighted AS adjacency matrix $\,({\rm i})\,\,n=0\,\,$ random walk model for initial case

$${}^{n}A := \begin{pmatrix} {}^{n}a_{11} & \dots & {}^{n}a_{1j} & \dots & {}^{n}a_{1m} \\ \vdots & \ddots & \vdots & & \vdots \\ {}^{n}a_{i1} & \dots & {}^{n}a_{ij} & \dots & {}^{n}a_{im} \\ \vdots & & \vdots & \ddots & \vdots \\ {}^{n}a_{m1} & \dots & {}^{n}a_{mj} & \dots & {}^{n}a_{mm} \end{pmatrix} \quad {}^{n}a_{ij} = \begin{cases} 1 & : \text{ if AS } i \text{ and AS } j \text{ are adjacent} \\ 0 & : \text{ otherwise} \end{cases}$$

$$(ii) \quad n \geq 1, n \in \mathbb{Z}$$

$${}^{n}a_{ij} = \begin{cases} (n-1)\rho_{j} & : \text{ if AS } i \text{ and AS } j \text{ are adjacent} \\ 0 & : \text{ otherwise} \end{cases}$$

(2) Equalize ingress and egress traffic; i.e., converting to traffic transition matrix

$${}^{n}T = \left(\frac{{}^{n}a_{ij}}{\sum_{k}{}^{n}a_{ik}} \right)$$

recursive definition

(3) Calculate the left eigenvector of T corresponding to the maximum eigenvalue

 $^{n}\!
ho$

: the left eigenvector; the i-th element denotes the magnitude of AS i.

H.Asai<panda@hongo wide ad jp>

AS relationships estimation: the difference of magnitude

Idea: estimate the relationships from difference of magnitude

$$\Delta^{n} \rho_{i,j} := \log_{10} \left(\frac{{}^{n} \rho_{i}}{{}^{n} \rho_{j}} \right)$$
$$= \log_{10} \left({}^{n} \rho_{i} \right) - \log_{10} \left({}^{n} \rho_{j} \right)$$

ANALYSIS & EVALUATION

of relationships.

Back to degree-based representation

H.Asai<panda@hongo.wide.ad.jp>

The distribution of difference of magnitude (n=2)

Dataset: CAIDA AS Relationships Dataset (10/08/2009)

Note; the distribution is normalized by area for each type of relationships.

How the difference of magnitude goes?

Potential of finding inaccurate annotations: Is Verison-Verio transit?

• According to CAIDA dataset, Verison (AS701) is provider of Verio (AS2914).

Conclusion

- We presented followings
 - quantify AS magnitude
 - extend degree to magnitude by eigenvalue analysis
 - characterize AS relationships
 - by comparing the difference of magnitude
- contribution
 - proposed path-less (i.e., not path but adjacency) analysis
 and characterization method for AS relationships
 - showed the potential of finding inaccurate annotations in CAIDA dataset
 - We will evaluate this point in greater detail in future.

THANK YOU FOR YOUR ATTENTION

