An analysis of IP Prefix Hijacking and Interception

By Khin Thida Latt kt-latt@jaist.ac.jp

09/09/15

Target Area

- Every organization has its Internet connectivity by one protocol: BGP4 (Border Gateway Protocol)
- This BGP4 has longstanding vulnerabilities
- Among these vulnerabilities, today presentation is about
 - "IP prefix Hijacking"
 - "Traffic Interception"

Background Info

Prefix hijacking and traffic interception are serious threats. Why?

AT & T WorldNet suffers outage (Dec 1999) leaving 1.8 million customers without Web access for almost a day

- Two weeks shutdown of all banking, government and political sites in Estonia (May 2007)
- Kenyan Route Hijack
 - An ISP from USA and Europe, AboveNet hijacked prefix owned by Africa Online (March 2008)

09/09/15

Purpose

Analyze !

- Many ideas have been presented to detect/prevent
- However, no enough analysis towards both areas

intends this analysis would be for a stepping-stone towards solving these two threats

- Introduction
- Taxonomy of IP prefix hijacking
- Taxonomy of traffic interception
- Attack model of Traffic Interception

Introduction

Hijacking and Interception?

- What is prefix hijacking?
- AS makes an advertisement of a prefix although it is neither prefix owner nor transit AS
- What is Traffic Interception?
- Traffic Interception = hijacking + *forwarding*

Prefix Hijacking

Reasons behind a hijack

- Legitimate reasonsEngineering traffic
- Mis-configuration
- Malicious attempts
 - Brand spoofing/phishing

Traffic Interception

Differences between Hijacking and Interception

- IP prefix Hijacking
 - black-hole all the hijacked traffic
 - connectivity disrupted (Denial of Service Attack)
 - be known after black holing the traffic
- Traffic Interception
 - No black-hole
 - connectivity is not disrupted (Man-In-The-Middle Attack)
 - Transparent to the victim

Taxonomy of Prefix Hijacking

How does malicious AS hijack a prefix?

By manipulating AS_PATH attribute of BGP update message

Classification of Prefix Hijacking

- If Announced prefix = 150.65.0.0/16, size of the hijacked prefix can be
 - 1. exactly same size *regular prefix hijacking* 150.65.0.0/16 (JAIST)
 - 2. more specific *sub prefix hijacking*
 - 150.65.117.0/24 (Shinoda-lab)
 - 3. Less specific *super prefix hijacking* 150.0.0/8

Some of real incidents

Date	Incident	Classification
Jan. 2006	Con-Ed Steals the Net Con Edison (AS27506) originated several prefixes that others own.	Invalid Origin Regular Prefix
Feb. 2008	Youtube IP hijacking! YouTube (AS36561) 's announced prefix = 208.65.152.0/22 Hijaced prefix by AS17557 = 208.65.153.0/24	Invalid Origin Sub prefix
Nov.2008	Potential Prefix Hijack by Brazil AS (AS16735) announced almost the whole Internet to two of its peers	Invalid Transit Regular Prefix

only currently-using prefixes are hijacked?

No!

- unused but possibly be assigned IP prefixes can also be hijacked
- Any legitimate traffic is not disrupted

Hijacking Incidents on Unused Address Space of US DoD During 2008

Prefix	Country	Duration	Classification
11.11.11.0/24	Hong Kong	1.1 hours	Invalid Origin – Sub prefix
7.7.7.0/24	South Korea	16.0 mins	Invalid Origin – Sub prefix
11.1.1.0/24	Russia	3.5weeks	Invalid Origin – Sub prefix
11.0.0.0/24	US	16.0 hours	Invalid Origin – Sub prefix
30.30.30.0/24	Argentina	40.0 mins	Invalid Origin – Sub prefix
11.1.1.0/24	Indonesia	2.1 mins	Invalid Origin – Sub prefix
11.11.11.0/24	Turkey	6.5 mins	Invalid Origin – Sub prefix
09/09/09			1

Attack Model

Recent Methods and issues

Category	Name	lssues
Modify BGP	SBGP, SoBGP	Not easily deployable
Checking central registry	Internet Registry Data	Not up-to-date
Filters	PG-BGP, Bogon	Manual, high false positives/negatives rate
Alarm services	BGPMon, PHAS, MyASN etc	Sometimes not distinguishable from legitimate ones
		Can detect only "Invalid Origin" Type

Taxonomy of Traffic Interception

How does malicious AS intercept?

- **1**. Firstly, hijack the prefix
- 2. Then forward the hijacked traffic
- To forward the traffic, malicious AS
 - know valid route to destination
 - make ASes along valid route keep valid route
 - ← Key to successful interception
 - > not introduce "unreachability" to victim

How does malicious AS maintain valid route?

maintains valid route by itself
OR
prepends valid route into invalid route

> Then how?

Attack Model

Attack Model with shorter AS_PATH

> Malicious AS maintains valid route by itself

To make successful Interception, Malicious AS follows

- Valley-free nature
- AS relationships (customer> peer> provider)

Not to introduce reachability problem

- 1. must carefully choose Ases to propagate invalid route
 - if existing route is through provider,
 - then propagate route to peers + customers
 - > else
- propagate route to all
- 2. must keep the valid route by itself to fwd traffic back

Attack Model with shorter AS_PATH

Hint to detect!

- Hint : hiding hops between itself and Origin AS shows "strange edge"
- * "edge" means "relationship"
- Strange edge" means "strange relationship"
- Strange relationship is the relationship that
 - Violates valley free nature
 - Introduces a big gap between two Ases
 - > Then how to explore relationships among ASes?

How to explore relationships?

Infer the relationships using route-view data

 Inferring based on degree of ASes + traffic size of Ases (currently doing)

Attack Model with longer AS_PATH

Malicious AS does not maintain valid route by itself

To make successful Interception, malicious AS

- Need not consider to which ASes invalid route should propagated
- 2. Need not keep the valid route by itself
- Just prepend valid route to invalid route
 - Taking advantage of "loop prevention mechanism"

Attack Model with longer AS_PATH

AS #X

announced prefix = 150.65.10.0/24 announced Path = [X,3,2,1,Y]

AS #3

> discard [X,3,2,1,Y] (AS loop)

AS #10

install best path = [X,3,2,1,Y]

AS #7

install best path =

[10,X,3,2,1,Y]

Hints to detect!

- Hint-1: can intercept only "sub" prefix
- Hint-2 : taking advantage of "loop prevention mechanism"
- These hints can be found in discarded paths
- To do -> check NLRI + AS_PATH in discarded paths

Summary

- Still no sol: towards interception
- Analysis/attack model give hints towards solution
- What kind of hints?
 - Attack model with shorter AS_PATH
 - malicious AS hides one or more Ases -> leads to strange edge
 - Attack model with longer AS_PATH
 - it takes ad of loop prevention mechanism -> should we check before discarding route?

Any Question?